Hafnium oxide nanoparticles: toward an in vitro predictive biological effect?
نویسندگان
چکیده
BACKGROUND Hafnium oxide, NBTXR3 nanoparticles were designed for high dose energy deposition within cancer cells when exposed to ionizing radiation. The purpose of this study was to assess the possibility of predicting in vitro the biological effect of NBTXR3 nanoparticles when exposed to ionizing radiation. METHODS Cellular uptake of NBTXR3 nanoparticles was assessed in a panel of human cancer cell lines (radioresistant and radiosensitive) by transmission electron microscopy. The radioenhancement of NBTXR3 nanoparticles was measured by the clonogenic survival assay. RESULTS NBTXR3 nanoparticles were taken up by cells in a concentration dependent manner, forming clusters in the cytoplasm. Differential nanoparticle uptake was observed between epithelial and mesenchymal or glioblastoma cell lines. The dose enhancement factor increased with increase NBTXR3 nanoparticle concentration and radiation dose. Beyond a minimum number of clusters per cell, the radioenhancement of NBTXR3 nanoparticles could be estimated from the radiation dose delivered and the radiosensitivity of the cancer cell lines. CONCLUSIONS Our preliminary results suggest a predictable in vitro biological effect of NBTXR3 nanoparticles exposed to ionizing radiation.
منابع مشابه
Comparison of Inhibitory Effects of Silver and Zinc Oxide Nanoparticles on the Growth of Plant Pathogenic Bacteria
In this research, the inhibitory effects of silver nanoparticles and zinc oxide nanoparticles, in vitro, on disease stone fruits bacterial canker caused by Pseudomonas syrigae pv. Syringae and disease bacterial blight caused by Xanthomonas arboricola pv. juglandis, were studied. Different concentrations of nanoparticles were prepared on Mueller Hinton agar medium in two different ways in a com...
متن کاملComparison of Inhibitory Effects of Silver and Zinc Oxide Nanoparticles on the Growth of Plant Pathogenic Bacteria
In this research, the inhibitory effects of silver nanoparticles and zinc oxide nanoparticles, in vitro, on disease stone fruits bacterial canker caused by Pseudomonas syrigae pv. Syringae and disease bacterial blight caused by Xanthomonas arboricola pv. juglandis, were studied. Different concentrations of nanoparticles were prepared on Mueller Hinton agar medium in two different ways in a com...
متن کاملCytotoxic Effect of Iron Oxide Nanoparticles on Mouse Embryonic Stem Cells by MTT Assay
Background: Despite the wide range of applications, there is a serious lack of information on the impact of the nanoparticles on human health and the environment. The present study was done to determine the range of dangerous concentrations of iron oxide nanoparticle and their effects on mouse embryonic stem cells. Methods: Iron oxide nanoparticles with less than 20 nanometers diameter were en...
متن کاملHistological Evaluation of the Fetus Lung in NMRI Mice after Exposure to Iron Oxide Nanoparticles: an in vitro Study
Background and Aim: Iron oxide nanoparticles are used in fields related to nanotechnology including ecology, magnetic storage, imaging and medicinal purposes. Iron nanoparticles produce reactive oxygen species (Ros). These materials are able to cross the placenta. The aim of this study was to investigate toxic effect of iron oxide nanoparticles on fetal lung in mice. <br ...
متن کاملNew use of metals as nanosized radioenhancers.
Since the discovery of cisplatin about 40 years ago, the design of innovative metal-based anticancer drugs is a growing area of research. Transition metal coordination complexes offer potential advantages over the more common organic-based drugs, including a wide range of coordination number and geometries, accessible redox states, tunability of the thermodynamics and kinetics of ligand substit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014